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ABSTRACT

A fundamental challenge that arises in biomedicine is
the need to characterize compounds in a relevant cel-
lular context in order to reveal potential on-target or off-
target effects. Recently, the fast accumulation of gene
transcriptional profiling data provides us an unprece-
dented opportunity to explore the protein targets of
chemical compounds from the perspective of cell tran-
scriptomics and RNA biology. Here, we propose a novel
Siamese spectral-based graph convolutional network
(SSGCN) model for inferring the protein targets of
chemical compounds from gene transcriptional profiles.
Although the gene signature of a compound perturba-
tion only provides indirect clues of the interacting tar-
gets, and the biological networks under different
experiment conditions further complicate the situation,
the SSGCNmodel was successfully trained to learn from
known compound-target pairs by uncovering the hidden
correlations between compound perturbation profiles
and gene knockdown profiles. On a benchmark set and

a large time-split validation dataset, the model achieved
higher target inference accuracy as compared to previ-
ous methods such as Connectivity Map. Further exper-
imental validations of prediction results highlight the
practical usefulness of SSGCN in either inferring the
interacting targets of compound, or reversely, in finding
novel inhibitors of a given target of interest.

KEYWORDS drug target inference, transcriptomics,
deep learning, experimental verification

INTRODUCTION

Because most drugs exert their therapeutic effects by inter-
acting with their in vivo targets, target prediction plays a
pivotal role in early drug discovery and development, par-
ticularly during the era of polypharmacology (Anighoro et al.,
2014). In the context of polypharmacology, the “magic bullet”
is likely an exceptional case, and in silico target prediction
can be used to explore the whole therapeutic target space
for a given molecule. This procedure might help deepen our
understanding of the mechanisms of action, metabolism,
adverse effects, and drug resistance of a molecule. By pre-
dicting targets of approved drugs, these clinically used
chemicals can be repurposed for other diseases (Ashburn
and Thor, 2004); for example, sildenafil (Terrett et al., 1996)
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is used to treat erectile dysfunction but was first developed
for the treatment of angina.

Targets of candidate molecules can either be identified via
biochemical experiments, such as protein proteomic mass
spectrometry, or predicted using computational approaches.
Computational target prediction has gained momentum due
to its low cost and high-throughput nature. The classical
methods generally include ligand-based (Geppert et al.,
2010) and structure-based methods (Schomburg et al.,
2014) : the former methods mainly model drug-target inter-
actions using features of small molecules, such as molecular
fingerprints and pharmacophores, and the latter methods
often rely on molecular docking to unveil potential interac-
tions between small molecules and proteins. Both of these
methods rely on the similarity assumption: “similar molecules
target similar proteins or vice versa” (Sydow et al., 2019).
However, this molecular similarity assumption does not
always hold, e.g., structurally similar molecules can display
different activities, such as the frequently observed activity
cliffs (Bajorath, 2014). Moreover, ligand-based methods tend
to exhibit decreased generalizability for new scaffold mole-
cules that are not similar to any known drugs, and structure-
based methods are limited by the lack of protein structures,
inaccurate scoring functions, and a long computation time
(Svensson et al., 2012).

The rapid accumulation of transcriptional profiling data
provides a new perspective for computational target predic-
tion. For example, the Library of Integrated Network-Based
Cellular Signatures (LINCS) L1000 dataset (Subramanian
et al., 2017) is a comprehensive resource of gene expres-
sion changes observed in human cell lines perturbed with
small molecules and genetic constructs. Several computa-
tional methods that involve the exploration of differential
expression patterns have been proposed (Bernardo et al.,
2005; Lamb et al., 2006; Iorio et al., 2010; Chua and Roth,
2011; Woo et al., 2015; Filzen et al., 2017; Noh et al., 2018;
Xie et al., 2018; Xu et al., 2018; Madhukar et al., 2019;
Salviato et al., 2019), and the strategies used in these
methods mainly include comparative analysis, network-
based analysis, and machine learning-based analysis (Cer-
eto-Massagué et al., 2015). The comparative analysis-based
methods infer targets based on gene signature similarities
(Lamb et al., 2006; Subramanian et al., 2017; Xu et al.,
2018). An example is Connectivity Map (CMap), which
assigns the target or mechanism of action (MOA) information
of the most similar reference chemical/genetic perturbations
to the new molecule by querying its gene expression sig-
nature against the reference L1000 library (Subramanian
et al., 2017). The network-based approach systematically
integrates gene expression profiles with cellular networks
(Gardner et al., 2003; Cosgrove et al., 2008; Woo et al.,
2015; Noh and Gunawan, 2016; Noh et al., 2018; Wang
et al., 2020). For example, the mode-of-action by network
identification (MNI) algorithm applies the network dynamics

model learning from chemical perturbations and knockdown
(KD) genetic perturbation to infer the drug targets ( Bernardo
et al., 2005). ProTINA applies a dynamic model to infer drug
targets from differential gene expression profiles by creating
a cell type-specific protein-gene regulatory network and
provides improved prediction results compared with similar
methods (Noh et al., 2018). Different machine learning
algorithms have also been used in mining transcription pro-
file data, which have formal standardized statistical frame-
work and optimization criteria and may show generalization
capability. Pabon et al. implemented a random forest (RF)
model to explore the correlations between compound-in-
duced signatures (CP-signatures) and gene KD-induced
signatures (KD-signatures) from CMap and predict drug
targets (Pabon et al., 2018). Their study and that conducted
by Liang et al. (2019) revealed that the comparison of the
differential expression patterns induced by chemical pertur-
bation with those induced by genetic perturbation might shed
light on potential information on the targets of a compound.
Because these gene expression profile-based methods go
beyond relying on the structural similarity between mole-
cules, they are more suitable for discovering the targets of
molecules with novel scaffolds. For these machine learning
models, a central question is how to incorporate information
about biological graph such as protein-protein interaction
networks. Conventional machine learning approaches often
rely on summary graph statistics or carefully engineered
features to measure local neighbourhood structures, which
do not systematically consider the relationship among the
nodes in biological networks (Hamilton et al., 2017). In
addition, there are many other influencing factors, such as
the effects of compound concentrations, the cellular back-
ground, and differences in the time scales between com-
pounds and shRNAs, making the modelling more
complicated. As a result, even if chemical and genetic per-
turbations interfere with the same target, the correlation
between their gene signatures calculated using traditional
methods might be very low because it is difficult to uncover
the potential relevance of the gene signatures in biological
networks under different conditions. To address this chal-
lenge, we propose a new graph convolution network (GCN)
model, SSGCN. A trainable SSGCN was employed to inte-
grate protein-protein interaction (PPI) information with raw
signatures to derive graphical embeddings, and the results
were then used to calculate the correlation between mole-
cule-induced and KD-induced signatures. By concatenating
the correlation results with the experimental CP time (the
time from compound perturbation to measurement), dosa-
ges, cell lines, and KD time (time from KD perturbation to
measurement), our model can predict drug targets across
durations and dosages. Moreover, both external validations
with LINCS phase II data and subsequently validated
experimental findings demonstrate the usefulness of
SSGCN in drug target identification and drug repositioning.
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RESULTS

Spectral-based GCN for learning the network
perturbation similarities

To capture the drug-target interactions and thus identify drug
targets, we propose a SSGCN model that learns the undis-
covered correlations between CP-signatures and the corre-
sponding KD-signatures at the network level.

Overall architecture of the model

The key idea of our target prediction model was to capture
the correlations between chemical and genetic perturbation-
induced gene expression in a more systematic manner.
Based on this notion, targets of a compound can be pre-
dicted by comparing the corresponding perturbed gene
expression profiles with a large number of KD-induced gene
expression profiles that are publicly available. To learn
potentially relevant information, as shown in Fig. 1A, two
spectral-based GCNs were built: one for compound pertur-
bation analyses, and one for gene perturbation analyses.
This new architecture of the SSGCN model can also be
divided into three main modules: the input module, the fea-
ture extraction module and the classification module. (1) The
PPI network and differential gene expression profiles were
the input of the first module. To unify information on the
topology of the PPI network and the differential gene
expression profiles, a property graph called a “gene signa-
ture graph” was constructed. Each node in the property
graph represents a protein, and the property of each node
was the corresponding differential gene expression value.
Any two nodes are connected by an edge if two proteins can
interact with each other. To represent compounds and tar-
gets, two gene signature graphs were constructed using
compound and gene perturbation data. (2) In the feature
extraction module, the spectral-based GCN was used for
graph embedding to integrate the PPI network topological
structure information and differential gene expression pro-
files. Graph embedding provides a compressed represen-
tation of the gene signature graph. To obtain graph
embeddings of the compounds and targets, two parallel
GCNs were established for feature extraction. Because
vector operations are more efficient than operations on
graphs, after the gene signature graphs were transformed
into graph embeddings, a simple linear regression layer
could be used to characterize the degree of correlation
between these two graph embeddings of compounds and
targets. Gene expression profiles are also related to cell
types, durations, and compound dosages (Musa et al.,
2018). Therefore, correlation values terms of Pearson R2

concatenated with the experimental meta-data (cell types,
durations, and compound dosages) were fed into the clas-
sification module. (3) The classification module was com-
posed of a fully connected hidden layer for extracting input
features and an output layer for binary classification. The
softmax function was applied in the output layer to compute

the probabilities of whether the compounds show activity
towards the potential targets (CPI scores). A label of 1 was
assigned to a compound-protein pair if the compounds
interacted with the corresponding protein, and a label of 0
was assigned to the opposite case.

The SSGCN model was implemented in the TensorFlow
framework (version TensorFlow-GPU 1.14.0) in Python 3.7.

Target prediction with the SSGCN model

As shown in Fig. 1B, for a given compound C, the pipeline of
predicting targets using the trained SSGCN model is as
follows: (1) Obtain the compound perturbation gene profile
on any of the eight cell lines, and extract the 978 landmark
genes defined by the LINCS consortium (see METHODS for
more details). In addition to L1000 assay, any cell-level
transcriptomic profiling methods such as commercial gene
expression microarrays or RNA sequencing (RNA-Seq) that
could provide such information will be also applicable. We
provided an “RNA-Seq application protocol” (a practical
example included) in the Supplementary Information. (2)
Feed the CP-signature and an existing KD-signature repre-
senting the gene perturbation profile of target T and their
related experimental conditions, i.e., CP time, dosage, KD
time, and cell line, to the trained SSGCN model for calcu-
lation of the CPI score of compound C and target T. (3)
Repeat step 2 for the reference library of 179,361 KD-per-
turbation profiles. (4) Sort the potential targets by descend-
ing the mean CPI score of KD-perturbation profiles of the
same target under different conditions. The top ranked tar-
gets are considered to be more likely to interact with com-
pound C. Similarly, for a given Target T of interest, the
pipeline can be reversely used to identify active compounds
by screening the reference library of 22,426 CP-perturbation
profiles (Fig. 1C).

Optimization and internal test of the model using LINCS
phase I data

The detailed process of data preprocessing can be found in
the article METHODS section of the article. In general, the
internal data set (training set, validation set, test set) and
external test set are essential for modeling. Since the
SSGCN model is sensitive to the combination of hyperpa-
rameters, hyperparameter search is important for model
optimization. To optimize the model, as shown in Fig. 2A,
different combinations of hyperparameters were evaluated
with the validation dataset through grid searching. Because
the number of negative samples was larger than that of
positive samples (3:1), both the area under the precision-
recall curve (AUPRC) and F1-score are more suitable for
evaluating the classification performance of the model. As
summarized in Fig. 2A, the final model showed the best
performance on the validation set with a learning rate of
10−3, a layer size of 2,048, and a dropout of 0.3. As shown in
Fig. 2B and 2C, the model has the best performance with an
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Figure 1. Target prediction using the SSGCN model. (A) Architecture of the SSGCN. Compound graph embedding is obtained by

a spectral-based graph convolutional network (GCN) to integrate the protein-protein interaction (PPI) network topological structure

information and compound perturbation profile. Target graph embedding is obtained by another GCN to integrate PPI and gene

knockdown perturbation profile. The correlation coefficient Pearson R2 is calculated between the compound graph embedding and

target graph embedding. The CP time is the duration of compound (CP) treatment and the KD time is the duration of gene knockdown

(KD) perturbation. CPI score is the classification probability of whether the compound interacts with the protein. (B) Pipeline of the

target inference using the SSGCN model. (C) Pipeline of identifying the novel active compound using the SSGCN model.
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AUPRC of 0.84 and an F1 score of 0.79 on the test dataset
when the epoch is 169.

External test and model comparison using LINCS
phase I data

Model performance and analysis using the external test set
in LINCS phase I data

Although the model exhibited satisfactory results with the
internal test dataset, we were more interested in its gener-
alization ability for real-world target prediction tasks. Based
on both the direct and indirect similarities between the
chemical and KD perturbation signatures of cells, Pabon
et al. applied an RF classification model to predict drug tar-
gets and constructed a dataset of 123 compounds and 79
targets, which could be considered a benchmark test for

target prediction based on transcriptional profiles. To facili-
tate comparison, we used the same performance metric, top
N accuracy, to evaluate the performance of our model. This
metric reflects the proportion of tested compounds whose
any true target can be correctly predicted among the top
ranked N targets, and in this study, N values of 100 and 30
were evaluated. This is a non-stringent but well-accepted
performance metric in the field of target inference. For
example, a top 30 value close to 0.7 means that for a set 100
of test compounds, there are about 70 compounds whose
real targets can be correctly ranked within the top 30 inferred
targets list. The prediction results of the random forest model
reported by Pabon et al. were directly used for model com-
parison. In addition, we also retrained the random forest
model with our dataset. For further comparison, CMap was
also implemented as a baseline model. For each compound

Figure 2. Heat maps for hyperparameters search. (A) The colormap reflects the magnitude of AUPRC (the area under precision

recall curve) value on the validation dataset. The detailed description of the model evaluation metric can be found in the METHODS

section of the article (Table 3). (B) Model performance shown in radar chart with six evaluation metric and (C) AUPRC-epoch curves.

The “epoch” means an entire dataset is passed through a neural network once.
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in the external dataset, its top and bottom ranked 150 dif-
ferentially expressed genes were used as the signature to
query all the compounds in the LINCS phase I training data
based on the CMap score. The value of the CMap score
ranged from −100 to 100, where a large and positive value
indicates that a reference compound could induce a signa-
ture similar to that induced by the query compound.
Accordingly, all the known targets of the retrieved reference
compounds with higher CMap scores were collected, and
the top ranked 100 and 30 targets were assigned to the
query compound as its candidate targets for calculating the
top 100 and 30 accuracy values, respectively. Moreover, the
network-based analytical method ProTINA was also bench-
marked. Following the steps used in a previous study (Noh
et al., 2018) and the provided code (https://github.com/
CABSEL/ProTINA), the protein targets of the compound

were ranked in descending order based on the magnitudes
of the protein scores provided by ProTINA. It should be
noted that different methods have different predicable target
coverages. For SSGCN and the method reported by Pabon
et al., the number of predicable targets corresponds to the
number of different genes with available knockdown profiles
in given cell lines. For CMap, the number is restricted to
compound target-encoding genes. Among these methods,
ProTINA covers more predicable targets because any genes
with gene expression values can be considered potential
targets. Finally, we reported the performance for a random
prediction to indicate how these models are better than blind
guessing.

For a fair comparison, the gene expression profiles of
these 123 compounds were excluded from the training
dataset to avoid any potential information leakage. The

Figure 3. Model comparison and analysis. (A) Performance of the SSGCN models tested on different cell lines compared with that

of the model developed by Pabon et al. (B) Effects of the cell lines on target prediction performance. The standard method is the

SSGCN model trained on the KD profiles of all 8 cell lines. (C) The correlation between the KD signatures of A549 and MCF7 cells is

significantly lower than that between the CP-signatures of these two cell lines. (D) Effects of the compound treatment time on target

prediction performance.
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remaining data were then used to train our model and predict
targets for these 123 compounds according to the pipeline
shown in Fig. 3. As shown in Table 1, the top 100 accuracy
values of the model in eight cell lines were higher than 0.7,
and the model tested on the PC3 cell line showed the best
prediction performance. The relative ranks of the true targets
were computed across eight cell lines. As shown in Fig. 3A
and Table 1, our prediction accuracies on different cell lines
were higher than those reported by Pabon et al. (***, P < 1 ×
10−10), CMap (***, P < 1 × 10−10), ProTINA (***, P < 1 ×
10−10), and random prediction (***, P < 1 × 10−10). It should
be noted that retraining the RF model of Pabon et al. with our
training set did not yield significant improvement in predic-
tion, suggesting that the higher accuracy of SSGCN cannot
be simply attributed to the introduction of more training data.

To analyse the effects of the cell lines on the prediction
performance, the datasets were split according to their cell
lines (PC3, A549, MCF7, HT29, A375, HA1E, VCAP and
HCC515). Eight individual submodels were constructed for
each cell line and then separately tested on the external test
dataset. As shown in Fig. 3B, these submodels could not
make transferable predictions across cell lines, with the
exception of the submodel trained with the transcriptional
data of PC3, which showed only moderate prediction capa-
bility (Top 100 accuracy = 0.33) on A375. The limitation of
these submodels can be attributed to the poor correlation
between the KD-signatures among different cell lines when
interfering with the same gene. As revealed in the original
study (Subramanian et al., 2017; Pabon et al., 2019), the
similarity between shRNAs targeting the same gene is only
slightly greater than random. Such similarity is even lower

than that of signatures obtained after interfering with the
same compound. Taking A549 and MCF7 as an example
(Fig. 3C), the correlation of the KD signatures between these
two cell lines was significantly lower than that of the CP-
signatures. As shown in Fig. 3B, the standard method is the
SSGCN model trained on the KD profiles of all 8 cell lines,
and it shows good prediction performance on any of them.
This result suggests that the application domain of the model
can be expanded by further incorporating more data from
different cell lines. Similarly, to analyse the effects of the CP
time on the target prediction, two individual submodels for
different time scales (6 h and 24 h) were built and tested. As
shown in Fig. 3D, the models built from the LINCS-CP-6h
dataset achieved a top 100 accuracy of 0.72 with the LINCS-
CP-24 h test dataset, and those built from the LINCS-CP-24
h dataset achieved a top 100 accuracy of 0.64 with the
LINCS-CP-6 h test dataset. These results showed that the
model could make transferable predictions across CP times.
In this study, the effects of the KD time on the target pre-
diction were not analysed because most available KD-sig-
natures were profiled at the same time (96 h, shown in
Table S1).

The SSGCN model reveals a “deep correlation”
between signatures

It is of interest to investigate whether our SSGCN model
could help reveal the “deep correlation” that cannot be
revealed by conventional normalization and scoring.
Intriguingly, the external test set contains gene expression
profiles of 38 different NR3C1 antagonists and thus

Table 1. Target prediction performance on the external test set in 8 cell lines

Methods Number of compounds Top 100 accuracy Top 30 accuracy

SSGCN (PC3) 123 0.84 0.71

SSGCN (A549) 123 0.73 0.59

SSGCN (MCF7) 117 0.82 0.64

SSGCN (HT29) 123 0.72 0.46

SSGCN (A375) 122 0.74 0.58

SSGCN (HA1E) 123 0.80 0.63

SSGCN (VCAP) 120 0.71 0.43

SSGCN (HCC515) 111 0.77 0.63

RF (Pabon et al.) 123 0.26 0.14

RF (Using our training dataset) 123 0.27 0.17

CMap (PC3) 123 0.15 0.024

ProTINA (PC3) 120 0.033 (0.058)* 0.017 (0.033)*

Random prediction 123 0.02 0.008

* Because many more genes can be considered by ProTINA, the top 255 and 77 accuracy values, which denote the accuracy values at the

same ratio of top 100 and 30 ranked targets, respectively, are also provided in parentheses for reference (255 = 100/3,980 ×10,174, 77 =

30/3,980 × 10,174). The bold means the best model.

Drug target inference by mining transcriptional data RESEARCH ARTICLE

© The Author(s) 2021 287

P
ro
te
in

&
C
e
ll



constitutes an ideal subset for comparing expression profiles
after different chemical and genetic interferences on the
same target. Using this subset, the target NR3C1 of 11
ligands was identified among the top 100 candidate targets
by the method developed by Pabon et al. In comparison, for
all these 38 ligands, NR3C1 can be successfully predicted
within the top 100 targets by our SSGCN model. As shown in
Fig. 4, raw R2 and KEGG Tanimoto coefficient represent two
conventional correlation scoring methods for comparing
gene expression values or KEGG pathway level features. No
significant correlation was found between the chemical and
shRNA-induced gene expression profiles using these two
methods. In contrast, the correlations calculated by com-
paring graph embeddings from the PPI network and differ-
ential gene expression profiles, termed deep R2, were
markedly higher. These results highlight that our SSGCN
model was able to determine the “deep correlation” between
gene expression profiles upon heterogeneous drug treat-
ments and explain why our model showed a markedly
improved prediction performance in inferring targets based
on transcriptional data.

Model verification using LINCS phase II data

To further evaluate the generalization capability of the model
in such a setting, LINCS phase II data were collected for
stricter “time-split” testing (Sheridan, 2013). This dataset
provides a more realistic prospective prediction setting in
which the test data were generated later than the data used
for modelling. After removing the overlapping compounds in
the LINCS phase 1 data, the external test dataset includes
250 compounds and 488 targets. The trained model was
employed to predict the targets of these compounds based
on the target prediction pipeline shown in Fig. 1. For com-
parison, a baseline model, CMap, was again implemented.

The time-split validation represents a more rigorous esti-
mate of the model performance. As summarized in Table 2,
the top 100 accuracy values of the SSGCN on the time-split
external test set ranged from 0.51 to 0.66 in six cell lines.
Although the accuracy declined slightly compared with the
previous internal test with phase I data, it might be caused by
different coverages of the target space (Fig. S1) and batch
effects such as temperature, wetness and different

Figure 4. Correlation analysis of gene expression profiles. The raw R2, KEGG Tanimoto coefficient and deep R2 were used to

represent the correlations of the raw gene expression values, KEGG pathway level features and graph embedding, respectively.

NR3C1_96_PC3 means the gene NR3C1 knockdown profiles was selected with a duration of 96 h in the PC3 cell line.
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laboratory technicians (Leek et al., 2010; Subramanian et al.,
2017), the overall results of the SSGCN model are still highly
reasonable. In comparison, the baseline model using the
CMap score for drug target prediction only yielded accuracy
values lower than 0.31. We further performed a literature
search for the discovered targets of these external test
compounds. For example, MAPK14 was ranked at the 26th
position of the potential targets for saracatinib, and we
searched European patents and found that the Kd value of
saracatinib for MAPK14 is 0.332 μmol/L. Similarly, MAPK1
was ranked at the 29th position among the potential targets
of adenosine (Fedorov et al., 2007). This literature evidence
further demonstrated the strong generalization capability of
the SSGCN model for drug target prediction. For better
visualization, a few external test compounds and their
interaction network with the top 30 targets predicted by
SSGCN are presented in Fig. 5 (more details are provided in
Table S2). For example, the compound SB-939 is a potent
pan-histone deacetylase (HDAC) inhibitor that inhibits class
I, IIA, IIB and IV HDACs (HDAC1-11) (Novotny-Diermayr
et al., 2010). As shown in Fig. 5A, the top ranked 11 targets
for this compound were all HDACs, which are in accordance
with the interacting targets reported previously. HDACs are
the relatively easily predictable targets for transcription-only
based target prediction methods, like CMap (Liu et al.,
2018). Alpelisib is an oral α-specific PI3K kinase inhibitor
that has shown efficacy in targeting PIK3CA-mutated cancer
(André et al., 2019), and its combination with fulvestrant has
recently been approved by the US Food and Drug Admin-
istration for the treatment of metastatic or otherwise
advanced breast cancer. Interestingly, as shown in Fig.5B,
the top ranked 30 targets of alpelisib are all types of different
kinases, and PIK3CA can be successfully identified among
the top three candidates. As a selective bromodomain-con-
taining protein (BET) inhibitor, PFI-1 reportedly interacts with
BRD4 with an IC50 of 0.22 μmol/L (Fish et al., 2012). As
shown in Fig. 5C, BRD4 was ranked third in the list of can-
didate targets. Moreover, our model predicted that PFI-1
might show cross-activity with a range of kinases. Because
an increasing number of studies have shown that BRD4/BET
inhibitors and kinase inhibitors might act synergistically in a

range of cancer types (Sun et al., 2015), the predicted off-
target interactions with kinases might provide clues and
starting points for further study of related dual functional
inhibitors (Timme et al., 2020). In some cases, the predic-
tions were unsuccessful, e.g., ATM and RAD3-related (ATR)
kinase is a reported target of VE-821, but this target was
ranked at the 1594th position. As shown in Fig. 5D, the top
30 ranked targets identified by SSGCN cover a wide range
of protein categories, including kinases, GPCRs and ion
channels. Because compounds with smaller molecular
weights might show promiscuity across different target
families, we cannot rule out the possibility that VE-821
interacts with the predicted targets, but none of these inter-
actions are supported by reported experimental evidence.
This example also suggested that the candidate target list
should be refined through further experimental verification
and combination with other complementary methods, such
as structure-based or similarity-based approaches. More-
over, we studied the relationship between protein family and
prediction performance of the SSGCN model (Fig. S2).
Among the 100 targets giving the best performing predic-
tions, we may find that a wide range of different types of
protein targets are included, not only epigenetic regulators or
kinases that may induce strong transcriptional signatures,
but also other enzymes, ion channels and membrane
receptors. These results suggest that our model indeed
learns the ability of target inference, but not simply remem-
bers some eminent transcriptional features. Overall, as
indicated in Table 2 and Fig. 5, it can be concluded that the
SSGCN model shows strong generalization ability for infer-
ring targets of previously unevaluated compounds and pro-
vides insights on cell-level transcriptomic responses to
chemical intervention and related polypharmacological
effects.

Compound-centric prediction of Cyclophilin
A as a novel target for nelfinavir

Nelfinavir (NFV) is a potent protease inhibitor that has been
widely used for many years for the treatment of human
immunodeficiency virus type 1 (HIV-1) infection. Recently,

Table 2. Target prediction performance on the LINCS phase II data

Cell lines Number of compounds Top 100 accuracy
(SSGCN)

Top 30
accuracy
(SSGCN)

Top 100
accuracy
(CMap)

Top 30
accuracy
(CMap)

PC3 249 0.53 0.30 0.29 0.12

A549 41 0.66 0.51 0.31 0.20

MCF7 240 0.53 0.30 0.24 0.10

A375 245 0.51 0.31 0.30 0.15

HA1E 238 0.56 0.34 0.27 0.13

HCC515 39 0.65 0.46 0.15 0.05

The bold means the best model.
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there is a rapidly expanding literature on the in vitro anti-
SARS-CoV-2 activity of NFV, which includes NFV signifi-
cantly inhibited SARS-CoV-2 replication in Vero E6 cells
(Arshad et al., 2020; Ianevski et al., 2020; Ohashi et al.,
2020; Xu et al., 2020a, b; Yamamoto et al., 2020), in silico
modeling showed NFV bound to SARS-CoV-2 main pro-
tease consistent with its inhibition of viral replication (Ohashi

et al., 2020; Xu et al. 2020). Besides, another in silico
modeling also suggested that NFV may bind inside the S
trimer structure and thus inhibited SARS-CoV-2 spike-me-
diated cell fusion, suggesting that NFV may efficiently inhibit
the spread of SARS-CoV-2 from cell-to-cell (Musarrat et al.,
2020). A major underlying cause of COVID-19 patient mor-
tality is a hyperinflammatory cytokine storm syndrome in

Figure 5. Examples of predicted targets (top 30) using the LINCS phase II data in PC3 cell lines. The following compounds

were used for target prediction: (A) SB-939, (B) alpelisib, (C) PFI-1 and (D) VE-821. The nodes in rectangles represent compounds,

and the nodes in circles represent the predicted targets. Predicted targets with a higher rank are indicated by a larger circle size. The

corresponding true targets are indicated by red borders. The links between predicted targets denote protein-protein interactions that

are curated from the STING database with a combined score greater than or equal to 800. Protein classification annotations come

from ChEMBL database.

RESEARCH ARTICLE Feisheng Zhong et al.

290 © The Author(s) 2021

P
ro
te
in

&
C
e
ll



severe/critically ill patients (Huang et al., 2020). NFV has
been reported to significantly inhibit inflammatory cytokines
in vitro (Equils et al., 2004; Wallet et al., 2012), and to reduce
inflammatory cytokine in a cohort of pediatric HIV-1 patients
for over 2 years of the therapy (Wallet et al., 2012), which
may be possible to help alleviate the cytokine storm syn-
drome of COVID-19. However, the anti-viral and/or anti-cy-
tokine-storm human targets of NFV have never been
identified and reported in the literature. Thus, investigations
of the potential anti-viral and/or anti-cytokine-storm human
targets of NFV is considered to be a significant work.

Therefore, we experimentally verified compound-centric
target inference pipeline (Fig. 1) by analyzing the gene
expression profile of NFV perturbation and potential target
protein-NFV direct binding. For the top 30 targets predicted
for NFV via the compound-centric target inference pipeline,
Calcineurin B, type II (CNBII, also known as PPP3R2),
Cyclophilin A (CYPA, also known as PPIA) and Calcineurin
A alpha (CNA1, also known as PPP3CA) were ranked 2th,
7th and 13th respectively and caught our attention. It has
been reported that the outcome of COVID-19 in a cohort of
patients undergoing treatment with calcineurin inhibitors is
promising, mainly due to the immunosuppressive role for
calcineurin inhibitors (Cavagna et al., 2020). CYPA has been
reported to regulate viral infectivity (Braaten and Luban,
2001), and its inhibition could inhibit the replication of coro-
naviruses and the inflammatory cytokine expression and
inflammation (Tanaka et al., 2013; Dawar et al., 2017). It’s
well known that CYPA and calcineurin are the upstream
regulators of nuclear factor of activated T cells (NF-AT)
activity, inhibition of CYPA and/or calcineurin blocks the
translocation of NF-AT from the cytosol into the nucleus, thus
preventing the expression of interleukin-2 (IL-2) (Tanaka
et al., 2013).

Given the possibility that NFV is a potential CYPA or
calcineurin inhibitor, we firstly measured the transcription
and secretion of IL-2 in Jurkat T cells upon phorbol
12-myristate 13-acetate (PMA) and ionomycin stimulation.
The results showed that NFV inhibited transcription of IL2 in
a dose-dependent manner (Fig. 6A). Similarly, NFV also
inhibited the secretion of IL-2 in a dose-dependent manner
and IC50 was 3.30 ± 0.34 μmol/L (the inhibition rate was
almost 100% at 20 μmol/L), which was inferior than IC50 of
cyclosporine A (CsA) (8.49 ± 0.17 nmol/L) (Fig. 6B and 6C),
a well-known immunosuppressive drug that is the main
inhibitor of CYPA (Tanaka et al., 2013). These results
inspired us to conduct further experiments to confirm the
possibility that NFV is a potential CYPA or calcineurin inhi-
bitor. We then evaluated the potential of NFV to inhibit the
calcineurin phosphatase activity using the RII phosphopep-
tide as substrate, and the results showed that NFV had no
obvious effect on calcineurin phosphatase activity (Fig. S3).
Therefore, we immediately performed chymotrypsin-coupled
CYPA peptidyl-prolyl cis-trans isomerase (PPIase) activity
assay to test whether NFV can affect the PPIase activity of
CYPA. The results showed that NFV exhibited significant

inhibition of CYPA PPIase activity, while the role was weaker
than CsA (Fig. 6D). To determine whether NFV directly bind
to CYPA and inhibit its activity, we examined the direct
binding of NFV to purified CYPA in vitro using surface
plasmon resonance technology. As shown in Fig. 6E, the
binding curve of NFV showed a fast-on, fast-off kinetic pat-
tern in dose-dependent manner with a KD of 0.94 μmol/L.
Furthermore, we measured the thermal stability of purified
CYPA in the presence of NFV. Protein thermal shift assay
showed that NFV destabilized CYPA conformation and
decreased the melting temperature (Tm) in a dose-depen-
dent manner (Fig. 6F–H), suggesting direct NFV-CYPA
binding. Although the ligand induced protein destabilization
is not typical, it has been frequently observed in the specific
binding of inhibitors to enzymes (Zhao et al., 2015; Pacold
et al., 2016). Here, we argue that NFV may destabilize the
native conformation of CYPA upon binding preferentially to
its less populated conformational state (Cimmperman et al.,
2008; Kabir et al., 2016), but the exact mechanism is not
clear and falls outside of the scope of the current study. To
gain the binding mode between NFV and CYPA, we docked
the NFV to the structure of CYPA (PDB ID: 2X2C). The
docking result showed that the NFV occupied the catalytic
pocket at the binding site (Fig. 6I), which may explain how
NFV affects the PPIase activity of CYPA. Taken together,
these results showed that NFV directly binds to CYPA and
inhibits its activity, and CYPA is a novel target for NFV. It has
been demonstrated that low concentration of IL-2 effectively
prevents excessive inflammation in a wide range of pre-
clinical models of inflammatory diseases, including beryl-
lium-induced lung inflammation, by maintaining activity and
survival of T regulatory cells (Treg) that play a crucial role in
the control of immune responses, in part by inhibiting over-
active inflammation, while high concentration of IL-2 has an
opposite effect inducing cytokine storm (Hirakawa et al.,
2016; Abbas et al., 2018; Xu et al., 2019). COVID-19 dis-
ease severity is associated with high plasma level of IL-2,
which may be considered therapeutic targets for COVID-19
to combat hyperinflammatory responses and cytokine
storms (Behm et al., 2020; Huang et al., 2020). The efficacy
of low dose IL-2 in improving clinical course and oxygenation
parameters in COVID-19 patient is now in clinical phase II
trials (NCT04357444). Based on these effects of NFV on
CYPA activity and IL-2 production, further research of NFV's
effect in human COVID-19 patients is warranted.

Target-centric prediction of methotrexate as a novel
ENPP1 inhibitor

Stimulator of interferongenes (STING) is anendogenoussensor
of cGAMP, which is synthesized by cyclic GMP-AMP synthase
(cGAS) following detection of cytoplasmic DNA. STING activa-
tion leads to interferon production and downstream innate and
adaptive immune responses (Corrales et al., 2015). Ectonu-
cleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) is the

Drug target inference by mining transcriptional data RESEARCH ARTICLE

© The Author(s) 2021 291

P
ro
te
in

&
C
e
ll



phosphodiesterase that negatively regulates STING by
hydrolyzing cGAMP (Li et al., 2014). It is pivotal and significant to
develop ENPP1 inhibitor for cancer immune therapy.

As shown in Fig. S4, the pipeline of the target-centric
prediction was applied to find the novel ENPP1 inhibitor. The
reference library of 22,425 compound perturbation profiles in

Figure 6. Compound-centric prediction of CYPA as a novel target for NFV. (A–C) NFV inhibited the transcription and secretion of

IL-2 in a dose-dependent manner. Jurkat T cells were treated with different concentration of NFV or CsA for 2 h, following stimulation

with PMA (100 nmol/L) and Ionomycin (10 μmol/L) for 24 h. After treatment, cells and culture supernatant were collected and

subjected to RT-qPCR and ELISA. IL2 mRNA levels were normalized to ACTB and fold induction was calculated relative to untreated

cells, data showed pooled technical replicates from three independent experiments. (D) CYPA peptidyl-prolyl cis-trans isomerase

(PPIase) activity was assessed using the α-chymotrypsin-coupled assay. Isomerization of the succinyl-AAPF-pNA peptide substrate

was reflected by an increase in absorbance at 390 nm. The curves represent isomerization of this substrate at 4 °C over the course of

360 s in the absence of CYPA (Blank), or in the presence of 2 μmol/L CYPA, or in the presence of 2 μmol/L CYPA incubated with 10

μmol/L NFV or CsA. Data are representative of three independent experiments with similar results. (E) NFV bound to CYPA protein as

shown by surface plasmon resonance measurements. Graphs of equilibrium response unit responses versus compound

concentrations were plotted. (F–H) Thermostability of CYPA treated with 0, 50, 100, 200 μmol/L NFV. The thermal stability of

CYPA was quantified by the ΔTm in pooled technical replicates from at least three independent experiments. Data are represented as

mean ± SD (n = 6), ***, P < 0.001; by 2-tailed, unpaired t-test. (I) The putative binding mode of NFV (stick) to human CYPA (surface,

2X2C). Error bars represent SD around the mean (A–C, H).
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the PC3 cell line were screened, and those compounds with
the CPI score greater than 0.5 were selected, leading to 190
compounds considered potentially active against ENPP1.
Considering the complexity of biological networks, comple-
mentary approaches should be integrated to produce the
most reliable target and mechanistic hypotheses (Schenone
et al., 2013). In computational target inference, Pabon et al.
have also demonstrated that molecular docking will reduce
the false positives and further enrich predictions of model
based on transcriptomics (Pabon et al., 2018, 2019).
Therefore, we also incorporated the structural screening as
an orthogonal approach in the pipeline, and we docked the
190 compounds to structures of ENPP1 (PDB ID: 4GTW)
and selected the top ranked 7 available compounds for fur-
ther experiment validation. We firstly evaluated the potential
of these 7 compounds to inhibit the ENPP1 enzyme activity
in vitro using thymidine 5’-monophosphate p-nitrophenyl
ester (p-Nph-5’-TMP) as substrate, the results showed
methotrexate (MTX) displayed promising inhibition activity

(>50%) at the concentration of 10 μmol/L, which was iden-
tified as an ENPP1 inhibitor with IC50 of 4.52 ± 0.04 μmol/L
(Figs. 7A and S5), while the effect was weaker than the
reported ENPP1 positive inhibitor ENPP-1-IN-1 (E1) (Gal-
latin et al., 2019). Similar ENPP1 inhibition effect of MTX was
observed using ATP as substrate by Liquid chromatography
and tandem mass spectrometry (Fig. 7B). To gain the
structural insight of the interaction between MTX and
ENPP1, we docked MTX with mouse ENPP1 (PDB ID:
4GTW). As shown in Fig. 7C, hydrogen bonds were formed
between N (1), N (8) atoms of pteridine ring and LYS-277, -
NH2 (2) of pteridine group and PHE-303. In addition, pi-pi
stacking interactions were formed between the pteridine ring
and TYR-322, PHE-239. These interactions might lock
pteridine moiety in the pocket tightly. Moreover, a salt bridge
and another hydrogen bond were formed between the tail
carboxyl groups and zinc ions, LYS-237, which might make
the conformation of MTX more stable in the pocket. To fur-
ther verify the interaction between MTX and ENPP1 protein,
cellular thermal shift assay (CETSA) was performed. The
thermostability of ENPP1 in 293T cell lysates with or without
50 μmol/L MTX was analyzed. As showed in representative
western blot (Fig. 7D), the detected soluble ENPP1 protein
exhibited a clear difference between being untreated and
treated with MTX at denaturation temperatures ranging from
52 °C to 62 °C, indicating MTX directly bound to the ENPP1
protein. To assess the effect of ENPP1 inhibition by MTX, we
detected representative STING-TBK1-IRF3 pathway down-
stream cytokines. As expected, MTX enhanced transcription
and secretion of interferon beta (IFN-β) induced by 500
nmol/L cGAMP in THP-1-derived macrophages, while MTX
alone administration didn’t (Fig. 7E and 7F), indicating the
enhancement was due to inhibition of cGAMP hydrolysis. In
same condition, MTX showed more effective activation than
the reported ENPP1 positive inhibitor E1 (Fig. 7E and 7F).
MTX enhanced transcription of IFNB1 (Fig. 7G), CXCL10
(Fig. 7I), IL6 (Fig. 7J) and secretion of IFN-β (Fig. 7H)
induced by cGAMP in THP-1-derived macrophages in a
dose-dependent manner. However, MTX could not enhance
the transcription of IFNB1 induced by GSK3 (Fig. S6),
another STING activator that does not have phosphodiester
linkage (Ramanjulu et al., 2018). Besides, MTX didn’t show
cytotoxicity at up to 100 μmol/L in THP-1-derived macro-
phages (Fig. S7). Similar STING pathway activation results
were observed in RAW 264.7 cells (Fig. 7K–N). Taken
together, MTX was identified as an ENPP1 inhibitor that
promoted STING activation in vitro. By inhibiting dihydrofo-
late reductase, MTX was originally developed and continues
to be used for the treatment of various types of cancer
including breast cancer (Sramek et al., 2017). Radiation
therapy, commonly used to treat cancer, was reported to
increase cytosolic DNA and induce STING activation (Car-
ozza et al., 2020). Our findings validated the SSGCN pre-
diction that MTX can be repurposed toward ENPP1.
Furthermore, MTX promoted STING pathway activation by
inhibiting ENPP1 and provided clinical potential for

Figure 7. Target-centric prediction of MTX as a novel

ENPP1 inhibitor. (A and B) Inhibition of MTX and E1 on

hydrolysis of p-Nph-5’-TMP (A) or ATP (B) by ENPP1 in vitro.

(C) The in silico simulation analysis of the binding site of the

ENPP1 (cyan, 4GTW) with MTX (violet). (D) Representative

immunoblot for the effect of MTX on thermal stability of ENPP1

protein in cellular thermal shift assay. 293T cell lysates with or

without MTX (50 μmol/L) treatment were incubated at different

temperatures, then ENPP1 turnover was monitored by Western

blot. (E and F) MTX and E1 increased the transcription (E) and

secretion (F) of IFN-β in cGAMP treated THP-1-derived

macrophages. THP-1-derived macrophages were treated with

MTX (20 μmol/L) or E1 (20 μmol/L), following stimulation with

cGAMP (500 nmol/L) for 24 h, then cells and culture super-

natant were collected and subject to RT-qPCR and ELISA. Data

are represented as mean ± SD (n = 3). *, P < 0.05; ***, P <

0.001; by 2-tailed, unpaired t-test. (G–J) MTX increased the

transcription of IFNB1 (G), CXCL10 (I), IL6 (J) and secretion of

IFN-β (H) in a dose-dependent manner in cGAMP treated THP-

1-derived macrophages.THP-1-derived macrophages were

treated with the indicated concentration of MTX, following

stimulation with cGAMP (500 nmol/L) for 24 h, then cells and

culture supernatant were collected and subjected to RT-qPCR

and ELISA. (K–N) MTX increased the transcription of Ifnb1 (K),

Cxcl10 (M), Il6 (N) and secretion of IFN-β (l) in a dose-

dependent manner in cGAMP treated RAW 264.7 cells. RAW

264.7 cells were treated with the indicated concentration of

MTX, following stimulation with cGAMP (5 μmol/L) for 24 h, then

cells and culture supernatant were collected and subjected to

RT-qPCR and ELISA. All above data showed pooled technical

replicates from three independent experiments. mRNA levels

were normalized to ACTB and fold induction was calculated

relative to untreated cells. Error bars represent SD around the

mean (A, B, E–N).

b
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combining MTX with radiation therapy for the treatment of
breast cancer in which ENPP1 shows hyper-expression
(Carozza et al., 2020).

DISCUSSION

The drug-induced perturbation of cells leads to complex
molecular responses upon target binding, such as the
feedback loop that changes the expression level of the target
node or its upstream and downstream nodes. These drug-
induced responses likely resemble those produced after
silencing the target protein-coding gene, which provides a
rationale for comparing the similarity between chemical- and
shRNA-induced gene expression profiles for target predic-
tion (Pabon et al., 2018). The encoding and denoising of a
given experiment’s transcriptional consequences constitute
a challenge. In this study, we proposed a new deep neural
network model, the Siamese spectral-based graph convo-
lutional network (SSGCN), to address this challenge.

The SSGCN model takes two differential gene expression
networks (a chemical-induced network and a shRNA-in-
duced network) as input and integrates heterogeneous
experimental condition information to account for variances
such as cell line-, dose- and time-dependent effects. By
training using known compound-target interaction data, the
model can automatically learn the hidden correlation
between gene expression profiles, and this “deep” correla-
tion was then used to query the reference library of 179,361
KD-perturbation profiles with the aim of identifying candidate
target-coding genes. The pipeline improved target prediction
performance on a benchmark test set. For more rigorous
time-split validation using LINCS phase II data, the target
prediction results obtained with our method achieved better
performance compared with those achieved with the con-
ventional CMap-based approach. Furthermore, to test the
practical usefulness of the approach, we simulated two
potential application scenarios and experimentally verified
the prediction results. In the first case, a compound-centric
target inference pipeline (Fig. 1B) was established to identify
the potential host targets of nelfinavir (NFV). In the second
case, the pipeline of a target-centric prediction was estab-
lished to find novel small molecule inhibitors of ectonu-
cleotide pyrophosphatase/phosphodiesterase 1 (ENPP1),
by screening 22,425 compound perturbation profiles. Our
experimental findings successfully validated that Cyclophilin
A (CYPA) ranked 7th place is a novel target of NFV, and
methotrexate (MTX) may promote STING pathway activation
by inhibiting ENPP1. These two examples highlight our
model as a useful tool to infer the interacting targets of active
compounds, or reversely, to find novel inhibitors of a given
target of interest. Moreover, we checked the similarity
between the predicted and the known drug-target interaction
pairs. The maximum chemical similarity between MTX and
the known ENPP1 inhibitors is 0.23, and the maximum

chemical similarity between NFV and the known CYPA
inhibitors is 0.22; The highest homology between CYPA and
known targets of NFV is 0.06773, and the highest homology
between ENPP1 and known targets of MTX is 0.1008. These
results indicate that our model is orthogonal to standard
approaches based on chemical/protein similarities and can
identify novel drug-target interactions, and clearly demon-
strate the importance of SSGCN as an orthogonal approach
to the conventional similarity based approaches. Overall, the
SSGCN model allows in silico target inference based on
transcriptional data and is of practical value for repurposing
existing drugs or exploring the MOA of not-well-character-
ized bioactive compounds and natural products.

METHODS

Materials and methods

Data collection

LINCS: The Library of Integrated Network-Based Cellular Signatures

(LINCS) program, which is funded by the NIH, generates and cat-

alogues the gene expression profiles of various cell lines exposed to

a variety of perturbing agents in multiple experimental contexts. Both

the LINCS phase I L1000 dataset (GSE92742, 2012–2015) and the

LINCS phase II L1000 dataset (GSE70138, 2015–2020) were

downloaded from the Gene Expression Omnibus (GEO) provided by

the Broad Institute. These profiles were produced by a high-

throughput gene expression assay called the L1000 assay, in which

a set of 978 “landmark” genes. This reduced “landmark” gene set

enabled the LINCS program to generate a million-scale transcrip-

tional profile. For the sake of connectivity analysis and convenience,

our analysis focused on the level 5 signature data (replicate-col-

lapsed z-score vectors) and used only real measured expression

values of the landmark genes. The Python library cmapPy (Enache

et al., 2019) was used to access the level 5 signatures from GCTx

files.

STRING: STRING (Szklarczyk et al., 2019) is a database com-

piled for PPIs from both known experimental findings and predicted

results. The human PPI network from the STRING v11.0 database

was downloaded.

Data preprocessing

LINCS: The pipeline used for the preprocessing of the LINCS

dataset is shown in Fig. 8A. (1) Profile signatures after perturbation

with shRNAs (Phase I). shRNA experiments might exhibit off-target

effects due to the “shared seed” sequence among shRNAs (Jackson

et al., 2003; Subramanian et al., 2017). To gain an abundant set of

robust KD signatures, we performed k-mean (k = 1) clustering of the

“trt_sh” signatures separated by the cell lines and KD time and

maintained the core signature, which is the central signature of the

cluster, as a representation of the corresponding cluster (Xie et al.,

2018). The core signatures across eight data-rich cell lines (A375,

A549, HA1E, HCC515, HT29, MCF7, PC3, and VCAP) were filtered

to obtain the corresponding 978 “landmark” vectors, which are 978
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differential gene expression values defined by the LINCS consor-

tium. These 978 vectors constituted the input of curated KD signa-

tures. (2) Profile signatures after perturbation with compounds

(phase I). The targets of the compounds were retrieved using the

application programming interface (API) from the cloud platform

(clue.io) provided by the Broad Institute. This retrieval resulted in

2,027 compounds with 755 targets. Consistent with the curated KD

signatures, CP-signatures were curated by filtering “trt_cp” signa-

tures out of the data-poor cell lines and non-landmark vectors. (3)

Profile signatures after perturbation with compounds (phase II). We

first filtered out those compounds contained in the phase I dataset

and then retrieved the targets of the compounds from the aggre-

gated ChEMBL bioactivity data on LINCS Data Portal through a

representational state transfer API (Koleti et al., 2018). The targets

with pKd, pKi or pIC50 values greater than or equal to 6.5 were

treated as the “true” targets (Lenselink et al., 2017). The retrieval

resulted in 250 compounds with 488 targets. The raw signatures of

these 250 compounds across eight data-rich cell lines (A375, A549,

HA1E, HCC515, HT29, MCF7, PC3, and VCAP) were then extracted

from the LINCS phase II dataset. As mentioned above, only the 978

“landmark” vectors were retained. We preferred to select the sam-

ples with a dosage of 10 μmol/L and a duration of 24 h, and for the

data without a dosage of 10 μmol/L or a duration of 24 h, the gene

signature for the closest conditions is used as an alternative.

STRING: We only kept the nodes present in the “landmark” gene

set and the PPI edges with a “combined score” greater than or equal

to 800. Accordingly, the curated PPI network consists of 978 nodes

and 7,528 edges (Fig. 8B).

Data sampling

The test set compiled by Pabon et al., which contained 123 FDA-

approved drugs that had been profiled in different LINCS cell lines

and whose known targets were among the genes knocked down in

the same cells, was used for benchmarking. Moreover, another

benchmark dataset was prepared based on 250 compounds from

LINCS phase II. The test dataset compiled by Pabon et al. and the

dataset from LINCS phase II are taken as two external datasets.

After excluding CP-signatures in these two external datasets, the

remaining data of the phase I of LINCS database is regarded as the

internal dataset. The internal dataset was divided into three sets:

training, validation, and test data set in the ratio of 8:1:1, by random

splitting based on chemical structures. In different drug discovery

projects, the proportion of active compounds may vary significantly

but in most cases those inactives appear more often than actives.

Here, for each compound three negative targets were generated for

each positive target through a random cross combination of com-

pounds and proteins. In addition, the performance of the model

trained with different data proportions was discussed in Fig. S8.

Definition of the spectral-based GCN

An undirected graph G with 978 nodes was applied to represent the

landmark PPI network. Each node in graph G represents a protein,

and each edge represents a specific PPI interaction. Neighbourhood

information is included in the edges. Traditional convolutional neural

network structures are unfit for convolution operations on this graph,

which is a non-Euclidian structure. Based on the Fourier transform of

Figure 8. Pipeline of the data processing. (A) Processing pipeline for LINCS L1000 data. (B) Processing pipeline for STRING

v11.0 PPI data. “trt_sh” and “trt_cp” are official tags that denote knock down treatment and compound treatment in LINCS dataset

respectively. “cell type filter” filtered out other cell type data except those in eight cell lines (A375, A549, HA1E, HCC515, HT29,

MCF7, PC3, and VCAP). “Landmark filter” filtered out other gene values in signatures except those in 978 “landmark” genes. The

“combined score” is measure score offered by STRING database for the confidence of several types of evidence which support a

protein-protein association.
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the graph and convolution theorem, spectral-based convolution

operations on the graph can be applied to capture the properties of

the graph network (Bruna, 2014).

For a given graph G, its Laplacian matrix L can be defined as

L=D --A , ð1Þ
where A is the adjacency matrix of graph G and D is the degree

matrix of graph G. In graph theory, the symmetric normalized

Laplacian is more often used due to its mathematical symmetry. The

symmetric normalized Laplacian Lsys can be defined as

Lsys =D
-- 1=2LD -- 1=2 . ð2Þ

Based on the classical Fourier transform, we redefined the

Fourier transform of the feature function in the node as the inner

product of the function and the corresponding eigenvectors of the

Laplacian matrix:

f̂ = f , vkh i , ð3Þ
where k is the node on the graph, f is the feature function in node k,

and vk is the eigenvector in the node of the Laplacian matrix. If

spectral decomposition is performed on the Laplacian matrix, Lsys
can be expressed as

Lsys =UλUT ð4Þ
U is the orthogonal matrix of which the column vector is the

eigenvector of the Laplacian matrix and λ is the diagonal matrix in

which the diagonal is composed of the eigenvalues. The Fourier

transform of the feature function f on the graph can then be rewritten

as

f̂ =UT f ð5Þ
Because U is an orthogonal matrix, the inverse Fourier transform

of function f on the graph can be written as

f =Uf̂ . ð6Þ
According to the convolution theorem in mathematics, a

convolution procedure of two functions is the inverse Fourier

transform of the product of their Fourier transforms. Defining h as

the convolution kernel, the convolution operation on the graph can

be expressed as

(f�h)graph =U((UTh)(UT f )) . ð7Þ

For the convolution operation in the first layer of the GCN, the

Fourier transform of h is directly defined as the trainable diagonal

matrix ω. Therefore, the convolution operation on the graph can be

expressed as

(f�h)graph =UωUT f . ð8Þ

After the above derivation, the final form of the single layer of the

spectral-based GCN can be expressed as

Hn+1 =σ(UωUTHn) . ð9Þ
where σ is the activation function of the layer, Hn is the input features

of layer nth, and Hn+1 is the output of layer (n+1)th. According to the

above definitions, the spectrum (eigenvalue) plays an important role

in the convolution operation; thus, the GCN is called the spectral-

based GCN. To effectively extract features and deeply learn from

data, the multilayer perceptron can be connected to the graph

convolution layer to increase the capacity of the model.

Training protocol

The model was trained on the training set using the Adam optimizer

(Kingma and Ba, 2014). The model was trained to minimize the

cross entropy between the label and the prediction result as follows:

loss= --
1
n
∑ ylnp+ (1 -- y) ln(1 --p)½ � ,

where p refers to the prediction result and y refers to the label. Early

stopping was used to terminate the training process if the perfor-

mance of the model on the validation dataset shows no further

improvement in specified successive steps, which helps selection of

the best epoch and avoid overfitting. The computational perfor-

mance took 2–3 h to train the model (through 380 epochs and 24 s

each) with a NVIDIA TITAN RTX graphics processing unit (GPU) on

an Intel platform.

Model evaluation metric

The predictive performance of the model on the test set was eval-

uated using six classification metrics: accuracy, precision, recall, F1

score, area under the receiver operating characteristic (ROC), and

area under the precision-recall curve (PRC). TP is the number of

true positives, TN is the number of true negatives, FP is the number

of false positives, and FN is the number of false negatives. All the

metrics were calculated using the scikit-learn package, and a

detailed introduction of the metrics is shown in Table 3.

Reagents

Succinyl-AAPF-pNA peptide (S7388), α-chymotrypsin (C4129),

SYPRO orange (S5692) and p-Nph-5’-TMP (T4510) were pur-

chased from Sigma-Aldrich. PolyJet (SL100688) was purchased

from SignaGen. CellTiter-Glo reagent (G7571) was purchased from

Promega. Nelfinavir Mesylate (NFV, S4282) and Cyclosporin A

(CsA, S2286) was purchased from Selleck. Methotrexate (MTX,

CSN16844) was purchased from CSNpharm. GSK3 (HY-112921B),

ENPP1-IN-1 (E1, HY-129490), ATP (HY-B2176), 2’3’-cGAMP

sodium (HY-100564A), Phorbol 12-myristate 13-acetate (PMA, HY-

18739) and Ionomycin (HY-13434) were purchased from

MedChemExpress. Isopropyl β-D-thiogalactoside (IPTG, A100487)

Table 3. Introduction of the metrics

Metric Description

Accuracy (TP + TN)/(TP + TN + FP + FN)

Precision TP/(TP + FP)

Recall TP/(TP + FN)

F1 score 2 × (Recall×Precision)=(Recall+Precision)

AUPRC Area under the precision-recall curve

AUROC Area under the receiver operating characteristic
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was purchased from Sangon Biotech. Tris-(2-carboxyethyl)-phos-

phine (TCEP, MB2601) was purchased from Meilun Biotech.

Peptidyl-prolyl cis-trans isomerase (PPIase) activity assay

CYPA isomerase activities were quantified using a α-chymotrypsin

coupled assay in a 96-well plate. The enzymatic reaction mixture

(195 μL) contained 50 mmol/L HEPES (pH 8.0), 100 mmol/L NaCl, 1

mg/mL BSA, 1 mg/mL α-chymotrypsin, 2 μmol/L CYPA and 10 μmol/

L NFV or CsA. The enzyme reactions were initiated by the addition

of 5 μL of 3.2 mmol/L Succinyl-AAPF-pNA peptide dissolved in tri-

fluoroethanol containing 470 mmol/L LiCl. Changes in absorbance

due to released p-nitroaniline were monitored at 390 nm every 4 s for

6 min at 4 °C using a Tecan Spark microplate reader (Tecan, Man-

nedorf, Switzerland). This experiment was performed three inde-

pendent times.

ENPP1 enzyme activity assay

Evaluation of the ENPP1 activity was carried out with p-Nph-5’-TMP

or ATP as the substrate. Enzymatic reactions were performed at 37 °

C in a total volume of 100 μL in a clear 96-well plate. The reaction

mixture (90 μL) contained 50 mmol/L Tris-HCl (pH 8.5), 130 mmol/L

NaCl, 1 mmol/L CaCl2, 5 mmol/L KCl, 10 μL ENPP1 cell lysate and

different concentration of MTX. The enzyme reactions were initiated

by the addition of 10 μL of 1 mmol/L p-Nph-5’-TMP dissolved in

deionized water. Changes in absorbance due to released p-nitro-

phenolate were measured at 405 nm every minute for 60 min at 37 °

C using a Tecan Spark microplate reader (Tecan, Mannedorf,

Switzerland). In the assays where ATP was used as the substrate,

the reaction was stopped after 30 min by heating samples at 95 °C

for 3 min. The ATP consumption was analyzed by LC-MS/MS (Sciex

API-4000). This experiment was performed three independent times.

Statistical analysis

Statistical analysis for in vitro experiments was done by GraphPad

Prism software, version 7.0. Statistical analysis for the model was

done by scipy, version 1.2.1. Data are presented as mean ± SD.

Differences in the quantitative data between groups were calculated

using 2-tailed unpaired t-test. P < 0.05 was considered to be

significant.

ABBREVIATIONS

API, application programming interface; ATR, ATM and RAD3-re-

lated; AUPRC, area under the precision-recall curve; BET, bro-

modomain-containing protein; CETSA, cellular thermal shift assay;

cGAS, cyclic GMP-AMP synthase; Cmap, Connectivity Map; CNA1,

Calcineurin A alpha; CNBII, Calcineurin B, type II; CP, Compound;

CPI scores, the probabilities of whether the compounds show

activity towards the potential targets; CP-signatures, compound-in-

duced signatures; CsA, cyclosporine A; CYPA, cyclophilin A; DMSO,

dimethyl sulfoxide; ENPP1, ectonucleotide pyrophosphatase/phos-

phodiesterase-1; GCN, graph convolution network; GEO, Gene

Expression Omnibus; GPU, graphics processing unit; HDAC, pan-

histone deacetylase; HIV-1, human immunodeficiency virus type 1;

IFN-β, interferon beta; IL-2, interleukin-2; KD, knockdown; KD-

signatures, gene KD-induced signatures; LINCS, the Library of

Integrated Network-Based Cellular Signatures; MNI, the mode-of-

action by network identification; MOA, mechanism of action; MTX,

methotrexate; NF-AT, nuclear factor of activated T cells; NFV, nelfi-

navir; PMA, phorbol 12-myristate 13-acetate; PPI, protein-protein

interaction; PPIase, peptidyl-prolyl cis-trans isomerase; PRC, the

precision-recall curve; RF, random forest; RNA-Seq, RNA

sequencing; ROC, the receiver operating characteristic; SSGCN,

Siamese spectral-based graph convolutional network; STING,

stimulator of interferon genes; TCEP, Tris-(2-carboxyethyl)-phos-

phine; Tm, melting temperature; Treg, T regulatory cells.
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